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ON T H E R M O C A P I L L A R Y  C O N V E C T I O N  OF A LIQUID 

IN A F L O A T I N G  Z O N E  

V. L. Senni t sk i i  UDC 532.68 

A new approach to the study of the therrnocapillary convection of a liquid in a floating zone is 
proposed. 

The study of the thermocapillary convection of a liquid in a floating zone (a liquid bridge) is an 
important modem problem of hydromechanics. It is directly related to the process of production of high- 
quality materials. This area of hydromechanics has been studied rather extensively (see, for example, [1-3] 
and the bibliography presented there). However, up to now there have not been analytical results that describe 
the flow of a liquid in a floating zone. This circumstance is due to the fact that the problem is extremely 
complicated, in particular, because part of the boundary of the region occupied by the liquid is solid, and 
paxt of it is free. 

In the present paper, we propose an approach that allows one to perform an effective analytical study of 
the thermocapillary convection of a liquid in a floating zone. This approach uses the engagement phenomenon 
[1], which is as follows. At the sharp edge of a solid body, the boundary angle (the angle between the free 
boundary of the liquid and the wetted surface of the solid body) does not have a unique possible value but 
various values are permissible. 

We consider the problem of plane thermocapillary convection of a liquid in a floating zone. 
There is a liquid that bounds a gas medium and solid bodies (see Fig. 1). The region fl occupied by 

the liquid is an infinitely long cylinder. The generatrices of the cylindrical sudace are parallel to the Z axes of 
a rectangular coordinate system X, Y, Z. The solid bodies have sharp edges, which intersect the plane Z - 0 
at the points O1, O2, 03, and 04. Each of these edges coincides with the line of contact of the liquid, the gas, 
and the solid body. The free boundary of the region f~ consists of two parts: rfl and Fez. The solid boundary 
of region f~ consists of two parts: Fsl and Fs~. The lines Lsl and Ls2 of intersection of Fsl and Fs2 with the 
plane Z - 0 are arcs of length 2AO* (0 < 0* < ~r/2) of a circle of radius A with center at the origin of the 
coordinates X, Y, Z. The temperature T of the liquid is Tf on ['fa and F~ and Ts on Fsl and Fs2 (Tf can have 
different values at different points of Ffa and ['f2; Ts is a constant). The sudace tension ~ of the liquid on the 
boundary with the gas medium depends on Tf. 

For an undisturbed state of the liquid, i.e., for Tf - Ts, the region fl is an infinitely long circular 
cylinder of radius A, the liquid is at rest, the liquid pressure is constant, and T = Ts. 

The fact that for the undisturbed state of the liquid the region f~ is a circular cylinder is essential, and 
this is realized owing to the phenomenon of catching. 

At the sharp edge of the solid body, the boundary angle a can have any value that satisfies the condition 
/3 ~ a <~/ /+ lr - 7, where/~ is the boundary angle on the smooth surface of the body and 7 is the angle 
between the planes that emerge from the sharp edge of the body and are tangents to the surface of the body. 
The region occupied by the liquid in the undisturbed state (the circular cylinder) can be produced from 
another permissible (cylindrical) region occupied by the liquid in the undisturbed state by changing (adding 
or removing) the amount of the liquid (in each part of finite length of the cylindrical region). 
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Fig. 1 

For Tf ~ Ts, the liquid performs stationary motion relative to the coordinates X,  Y, Z. The  liquid 
flow is planar ( the flow planes are perpendicular to the Z axis). The  cross section Z = 0 of the region fl, the 
temperature,  liquid velocity, and pressure in this cross section are symmetric  about the X and Y axes. 

We assume that  zl  = X / A ,  z2 = Y / A ,  z3 = Z / A ,  r -- ~ 1 2  + z22, F is the boundary of the region f~, 
L is the line of intersection of F with the plane z3 = 0, H is the curvature of L, 7 /=  AH, en is a unit  vector 
normal to F (directed from f~), et is a unit  vector tangent to L (directed in the positive direction of tour 
around L), S is the length of the arc L which issues from the point (1,0,0) (the direction of increase in S 
coincides with the  direction of et), 8 = S / A ,  oo is the wlue  of ~ for Tf = Ts, ~ is the  largest value of ]0 - 00[, 
o = o0 + ~ f  [ f  = f(8)], v is the  kinematic viscosity of the liquid, Ma = A~r/(pv 2) is the  Marangoni number, 
A = Aoo/(pv2) ,  V is the liquid velocity, v = A V / v ,  p is the liquid density, Ps is the gas pressure, P is the 
liquid pressure, p = A 2 ( P  - Pg - oo/A) / (pv2) ,  P is the stress tensor of the liquid, I = ( l i j )  is a unit  tensor, 
P = (Pij) = A2[p + (Ps + ~  v2) (pij = - p 1 6  + Ovi/Ozi  + av j /Oz i ) ,  r = T - Ts, and X is the thermal 
ditfnsivity of the  liquid. 

The  equations of the  lines Ln  and Lm of intersection of Fn and F~2 with the plane z3 = 0, the equations 
of liquid convection (Navier-Stokes continuity, and heat-transfer equations, [4]) and the conditions that  should 
be satisfied on Lsl, Ls2, Ln ,  and Lt2, have the following form: 

r = ~I; (I) 

," = (2) 

( v .  V)v  = - V p  + Av; (3) 

V . v - 0 ;  (4) 

v .  W" = x_ (5) 
// 

v = 0 ,  w = 0  on L,1, Ls2; (6) 

df 
v -  e,,-----O, p �9 e,, = [A(1 - ~7) - Ma)Tf]e,, + Ma ~ e,, 

1" = Tf - Ts on Ln, Lu. (7) 

It is required to determine ~1,'~2, v,  p, and ~. 
Let us examine problem (1)-(7) for small Ma numbers compared to unity. 
We assume that  as Ma ~ 0, 

~, ~ ~o) + M a ~ , )  ~#a "~ ~#~o) + M a ~ , ) ,  v .-.. v (~ + Mav (I), 

p ,,~ p(O) + MapO), w ~ w (~ + Ma l  "0). (8) 

385 



In a zero approximation that corresponds to the undisturbed state of the liquid, we have 

which is the equation of the line L~ ~ 

and 
, =~0~  

which is the equation of the line L(~ ), 

(0" < 0 < ~ - 0"), 

~0) = 1, 

(~" + O* < 0 < 2~r - 0"), 

~0) = 1 

[0 is the angle between the vectors (1,0,0) and (Xl,X2,0) (0 < 0 <~ 2~), and L(~ ) and L(~ ) are the lines 
of intersection of the free boundary of the region occupied by the liquid in the zero approximation with the 
plane x3 = 0], 

v (~ p(0)=0, r (~ (9) 

Let us define the problem of the first approximation using (1)-(9): 

r =  1 + M a ~  1) (0" < 0 < l r -  0"), (i0) 

which is the equation of the line L(~); 

r---- 1 +Ma~ 1) (It + 0* < 0 < 21r- 0"), (II) 

which is the equation of the line L~ ) (L(~) and L(~ ) are the lines of intersection of the free boundary of the 
region occupied by the liquid in the first approximation with the plane x3 = 0); 

_pO) + 2 -- - 

-Vp (D + Av (I) = 0; (12) 

V-v O) = 0; (13) 

~'~ = o on  L . , ,  L~p (i = 1, 2); (14) 

~')=0 on L., (i=1,2); (is) 

OvO) 
Or 

Ov$1) 
Or 

A[d2•! ') 
' + s = 0 o .  = 2) ;  

- d ' ~ -  ~ = 0 on L~ ~ (i = 1, 2); dO 
ArO) = O; 

r 0 ) - - 0  on Lsi ( i - - 1 , 2 ) ;  

r = ~ on L ~  (i = 1, 2). 

(16) 

(17) 

(18) 

(19) 

(20) 

Here v! ') and v 0)  are the r and 0 components of the vector v( ' ) ,  ~o = lim (Tf - Ts)/Ma. For the region 
M~--*0 

occupied by the liquid in the zero approximation, Eqs. (12), (13) have the following solution that satisfies 
condition (14): 

v!') I c9r v~, ) 0r  (21) 
- r 00'  = - ~ r r ;  
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Here r = (I - r 2) 

obtain 

co 

p(') = ao + 4 ~ (m + 1)(amsinmO + bmcosraO)r m. (22) 
m = l  

(am cos mO+ bm sin mO)r m and ao, am, and bm are constants. Using (15) and (21), we 
m----~l 

am = 0 ( m  = 1, 2 , . . . ) ;  

b2,-,  = 0 (n = 1, 2 , . . . ) ;  

r/2 
b2, 2 / = - usin2nOdO (n = 1, 2 , . . . ) ,  

7C 
O* 

v 0)1 We assume that Tf --* Ts as s --* 0* + 0. Accordingly, we have where u = s b=l,s*<o<.+/2" 

f = O  for 0 = 0 " ,  O=a ' - -O*,  O = a ' + O * ,  0 = 2 7 c - 0 " .  

From (17), (21), and (23)-(26) it follows that 
oo 

f = 4 ~ b2.(cos 2nO* - cos 2nO). 
n=l 

(23) 

(24) 

(25) 

(26) 

(27) 

Equalities (25) and (27) define the relationship between the quantities f and u. According to (17), (21), and 
(23)-(25), we have 

1 
b2k -- 

2k(x - 20") + sin 4k0* 

{ ++ ~ } 
x j -~  sin2kOdO + 2 Y]~ nZ _ k2 [(n + k)sin2(n - k)O* - (n - k) sin2(n + k)O*]~, (k = 1, 2 , . . . ) .  

e* a#k rim1 

" Using (16) and (21)-(25) and taking into account that the lines L(~ ) and L(~ ) border the lines Lsl and 
Ls2 at the points 01, 02, 04, and 03, we obtain 

s i n  0 . ~  ~I) / sinO '~ 
= .,1 + (28) -- p \ l  sin 0"]' \ sin 0"]' 

where 1( ) 
p = -~ - ao + 4 ~ b~, cos 2nO* . 

n m l  

Let, in the first approximation, 7rA21q(1) he the liquid volume of the bounded by two flow planes 
separated by distance I. Ignoring the liquid-density variations due to the difference of T from T,, we have 

q(') = 1. (29) 

From (10), (11), (28), and (29) it follows that 
oo 

a0 = 4 ~ b2, cos 2n8". (30) 
n m l  

According to (28) and (30), we have 

(31) C=0. 
Relations (21)-(25) and (31) define a solution of problem (10)-(16) that satisfies equality (29). 
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We note that for a rather smooth dependence of v$1)1 on O, the operations performed on the series 
r~-I 

are easily substantiated (see [5]). 
Using (18)-(20), we obtain 

where 

OO 

r ( ') = co + ~ cn cos 2n0 r 2a, (32) 
n---~l 

./2 ./2 

CO = qodO; e~ = - ~ocos2nOdO (n = 1, 2,...). 
O* O* 

The relations ~, = i + Ma~ '), ~2 ---~ 1 + Ma~ '), v = May0), p =  Map('), and r = Mar(') and (21)- 
(25), (27), (31), and (32) define the approximate solution of the examined problem of the thermocapillary 
convection of a liquid in a floating zone. 

The results obtained demonstrate the basic laws and provide answers to particular questions pertaining 
to the problem considered. 

Other problems of plane or spatial convection of a liquid in a floating zone can be studied in the same 
manner as was done above. The approach proposed in the present paper can be used to study both steady 
and unsteady liquid flows in the absence or presence of mass forces. 
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