ON THERMOCAPILLARY CONVECTION OF A LIQUID

 IN A FLOATING ZONEV. L. Sennitskii

UDC 532.68

Abstract

A new approach to the study of the thermocapillary convection of a liquid in a floating zone is proposed.

The study of the thermocapillary convection of a liquid in a floating zone (a liquid bridge) is an important modern problem of hydromechanics. It is directly related to the process of production of highquality materials. This area of hydromechanics has been studied rather extensively (see, for example, [1-3] and the bibliography presented there). However, up to now there have not been analytical results that describe the flow of a liquid in a floating zone. This circumstance is due to the fact that the problem is extremely complicated, in particular, because part of the boundary of the region occupied by the liquid is solid, and part of it is free.

In the present paper, we propose an approach that allows one to perform an effective analytical study of the thermocapillary convection of a liquid in a floating zone. This approach uses the engagement phenomenon [1], which is as follows. At the sharp edge of a solid body, the boundary angle (the angle between the free boundary of the liquid and the wetted surface of the solid body) does not have a unique possible value but various values are permissible.

We consider the problem of plane thermocapillary convection of a liquid in a floating zone.
There is a liquid that bounds a gas medium and solid bodies (see Fig. 1). The region Ω occupied by the liquid is an infinitely long cylinder. The generatrices of the cylindrical surface are parallel to the Z axes of a rectangular coordinate system X, Y, Z. The solid bodies have sharp edges, which intersect the plane $Z=0$ at the points O_{1}, O_{2}, O_{3}, and O_{4}. Each of these edges coincides with the line of contact of the liquid, the gas, and the solid body. The free boundary of the region Ω consists of two parts: $\Gamma_{\mathrm{f} 1}$ and $\Gamma_{\mathrm{f} 2}$. The solid boundary of region Ω consists of two parts: $\Gamma_{s 1}$ and $\Gamma_{s 2}$. The lines $L_{\mathrm{s} 1}$ and $L_{\mathrm{s} 2}$ of intersection of $\Gamma_{s 1}$ and $\Gamma_{\mathrm{s} 2}$ with the plane $Z=0$ are arcs of length $2 A \theta^{*}\left(0<\theta^{*}<\pi / 2\right)$ of a circle of radius A with center at the origin of the coordinates X, Y, Z. The temperature T of the liquid is T_{f} on $\Gamma_{f 1}$ and $\Gamma_{f 2}$ and T_{s} on $\Gamma_{s 1}$ and $\Gamma_{s 2}\left(T_{f}\right.$ can have different values at different points of $\Gamma_{\mathrm{f} 1}$ and $\Gamma_{\mathrm{f} ;} T_{\mathrm{s}}$ is a constant). The surface tension σ of the liquid on the boundary with the gas medium depends on T_{f}.

For an undisturbed state of the liquid, i.e., for $T_{\mathrm{f}}=T_{8}$, the region Ω is an infinitely long circular cylinder of radius A, the liquid is at rest, the liquid pressure is constant, and $T=T_{3}$.

The fact that for the undisturbed state of the liquid the region Ω is a circular cylinder is essential, and this is realized owing to the phenomenon of catching.

At the sharp edge of the solid body, the boundary angle α can have any value that satisfies the condition $\beta \leqslant \alpha \leqslant \beta+\pi-\gamma$, where β is the boundary angle on the smooth surface of the body and γ is the angle between the planes that emerge from the sharp edge of the body and are tangents to the surface of the body. The region occupied by the liquid in the undisturbed state (the circular cylinder) can be produced from another permissible (cylindrical) region occupied by the liquid in the undisturbed state by changing (adding or removing) the amount of the liquid (in each part of finite length of the cylindrical region).

[^0]

Fig. 1

For $T_{\mathrm{f}} \neq T_{\mathrm{s}}$, the liquid performs stationary motion relative to the coordinates X, Y, Z. The liquid flow is planar (the flow planes are perpendicular to the Z axis). The cross section $Z=0$ of the region Ω, the temperature, liquid velocity, and pressure in this cross section are symmetric about the X and Y axes.

We assume that $x_{1}=X / A, x_{2}=Y / A, x_{3}=Z / A, r=\sqrt{x_{1}^{2}+x_{2}^{2}}, \Gamma$ is the boundary of the region Ω, L is the line of intersection of Γ with the plane $x_{3}=0, \mathrm{H}$ is the curvature of $L, \eta=A \mathrm{H}, \mathrm{e}_{n}$ is a unit vector normal to Γ (directed from Ω), e_{t} is a unit vector tangent to L (directed in the positive direction of tour around L), S is the length of the arc L which issues from the point $(1,0,0)$ (the direction of increase in S coincides with the direction of e_{t}), $s=S / A, \sigma_{0}$ is the value of σ for $T_{\mathrm{f}}=T_{s}, \hat{\boldsymbol{\sigma}}$ is the largest value of $\left|\sigma-\sigma_{0}\right|$, $\sigma=\sigma_{0}+\hat{\sigma} f[f=f(s)], \nu$ is the kinematic viscosity of the liquid, $\mathrm{Ma}=A \hat{\sigma} /\left(\rho \nu^{2}\right)$ is the Marangoni number, $\lambda=A \sigma_{0} /\left(\rho \nu^{2}\right), \mathrm{V}$ is the liquid velocity, $\mathrm{v}=A \mathrm{~V} / \nu, \rho$ is the liquid density, P_{g} is the gas pressure, P is the liquid pressure, $p=A^{2}\left(P-P_{\mathrm{g}}-\sigma_{0} / A\right) /\left(\rho \nu^{2}\right), \mathbf{P}$ is the stress tensor of the liquid, $\mathrm{I}=\left(I_{i j}\right)$ is a unit tensor, $\mathbf{p}=\left(p_{i j}\right)=A^{2}\left[\mathbf{P}+\left(P_{\mathrm{g}}+\sigma_{0} / A\right) \boldsymbol{I}\right] /\left(\rho \nu^{2}\right)\left(p_{i j}=-p I_{i j}+\partial v_{i} / \partial x_{j}+\partial v_{j} / \partial x_{i}\right), \tau=T-T_{\mathrm{i}}$, and χ is the thermal diffusivity of the liquid.

The equations of the lines $L_{\mathrm{f} 1}$ and $L_{\mathrm{f} 2}$ of intersection of $\Gamma_{\mathrm{f} 1}$ and $\Gamma_{\mathrm{f} 2}$ with the plane $x_{3}=0$, the equations of liquid convection (Navier-Stokes continuity, and heat-transfer equations, [4]) and the conditions that should be satisfied on $L_{\mathrm{s} 1}, L_{\mathrm{s} 2}, L_{\mathrm{f} 1}$, and $L_{\mathrm{f} 2}$, have the following form:

$$
\begin{gather*}
r=\xi_{1} ; \tag{1}\\
r=\xi_{2} ; \tag{2}\\
(\mathbf{v} \cdot \nabla) \mathbf{v}=-\nabla p+\Delta \mathbf{v} ; \tag{3}\\
\nabla \cdot \mathbf{v}=0 ; \tag{4}\\
\mathbf{v} \cdot \nabla \tau=\frac{\chi}{\nu} \Delta \tau ; \tag{5}\\
\mathbf{v}=0, \quad \tau=0 \quad \text { on } \quad L_{s 1}, \quad L_{s} 2 ; \tag{6}\\
\mathbf{v} \cdot \mathbf{e}_{n}=0, \quad \mathrm{p} \cdot \mathbf{e}_{n}=\left[\begin{array}{ll}
\lambda(1-\eta)-\mathrm{Ma} \eta f] \mathrm{e}_{n}+\mathrm{Ma} \frac{d f}{d s} \mathrm{e}_{t}, \\
\tau=T_{\mathrm{f}}-T_{\mathrm{s}} \quad \text { on } \quad L_{\mathrm{f} 1}, \quad L_{f 2} .
\end{array}\right. \tag{7}
\end{gather*}
$$

It is required to determine $\xi_{1}, \xi_{2}, \mathbf{v}, p$, and τ.
Let us examine problem (1)-(7) for small Ma numbers compared to unity.
We assume that as $\mathrm{Ma} \rightarrow 0$,

$$
\begin{gather*}
\xi_{1} \sim \xi_{1}^{(0)}+\mathrm{Ma} \xi_{1}^{(1)}, \quad \xi_{2} \sim \xi_{2}^{(0)}+\mathrm{Ma} \xi_{2}^{(1)}, \quad \mathrm{v} \sim \mathrm{v}^{(0)}+\mathrm{Ma} \mathrm{v}^{(1)}, \\
p \sim p^{(0)}+\mathrm{Ma} p^{(1)}, \quad \tau \sim \tau^{(0)}+\mathrm{Ma} \tau^{(1)} \tag{8}
\end{gather*}
$$

In a zero approximation that corresponds to the undisturbed state of the liquid, we have

$$
r=\xi_{1}^{(0)} \quad\left(\theta^{*}<\theta<\pi-\theta^{*}\right)
$$

which is the equation of the line $L_{\mathrm{fl}}^{(0)}$,

$$
\xi_{1}^{(0)}=1,
$$

and

$$
r=\xi_{2}^{(0)} \quad\left(\pi+\theta^{*}<\theta<2 \pi-\theta^{*}\right)
$$

which is the equation of the line $L_{\mathrm{f} 2}^{(0)}$,

$$
\xi_{2}^{(0)}=1
$$

[θ is the angle between the vectors $(1,0,0)$ and $\left(x_{1}, x_{2}, 0\right)(0 \leqslant \theta \leqslant 2 \pi)$, and $L_{\mathrm{f}}^{(0)}$ and $L_{\mathrm{f} 2}^{(0)}$ are the lines of intersection of the free boundary of the region occupied by the liquid in the zero approximation with the plane $x_{3}=0$],

$$
\begin{equation*}
\mathbf{v}^{(0)}=0, \quad p^{(0)}=0, \quad \tau^{(0)}=0 . \tag{9}
\end{equation*}
$$

Let us define the problem of the first approximation using (1)-(9):

$$
\begin{equation*}
r=1+\operatorname{Ma} \xi_{1}^{(1)} \quad\left(\theta^{*}<\theta<\pi-\theta^{*}\right) \tag{10}
\end{equation*}
$$

which is the equation of the line $L_{\mathrm{fl}}^{(1)}$;

$$
\begin{equation*}
r=1+\mathrm{Ma} \xi_{2}^{(1)} \quad\left(\pi+\theta^{*}<\theta<2 \pi-\theta^{*}\right) \tag{11}
\end{equation*}
$$

which is the equation of the line $L_{\mathrm{f} 2}^{(1)}\left(L_{\mathrm{fl}}^{(1)}\right.$ and $L_{\mathrm{f} 2}^{(1)}$ are the lines of intersection of the free boundary of the region occupied by the liquid in the first approximation with the plane $x_{3}=0$);

$$
\begin{gather*}
-\nabla p^{(1)}+\Delta v^{(1)}=0 ; \tag{12}\\
\nabla \cdot v^{(1)}=0 ; \tag{13}\\
v_{r}^{(1)}=0 \quad \text { on } \quad L_{s i}, \quad L_{f i}^{(0)} \quad(i=1,2) ; \tag{14}\\
v_{\theta}^{(1)}=0 \quad \text { on } \quad L_{s i} \quad(i=1,2) ; \tag{15}\\
-p^{(1)}+2 \frac{\partial v_{r}^{(1)}}{\partial r}-\lambda\left(\frac{d^{2} \xi_{i}^{(1)}}{d \theta^{2}}+\xi_{i}^{(1)}\right)+f=0 \text { on } L_{f i}^{(0)} \quad(i=1,2) ; \tag{16}\\
\frac{\partial v_{\theta}^{(1)}}{\partial r}-v_{\theta}^{(1)}-\frac{d f}{d \theta}=0 \text { on } L_{f i}^{(0)} \quad(i=1,2) ; \tag{17}\\
\Delta \tau^{(1)}=0 ; \tag{18}\\
\tau^{(1)}=0 \quad \text { on } \quad L_{s i} \quad(i=1,2) ; \tag{19}\\
\tau^{(1)}=\varphi \quad \text { on } \quad L_{f i}^{(0)} \quad(i=1,2) . \tag{20}
\end{gather*}
$$

Here $v_{r}^{(1)}$ and $v_{\theta}^{(1)}$ are the r and θ components of the vector $v^{(1)}, \varphi=\lim _{M a \rightarrow 0}\left(T_{\mathrm{f}}-T_{s}\right) / \mathrm{Ma}$. For the region occupied by the liquid in the zero approximation, Eqs. (12), (13) have the following solution that satisfies condition (14):

$$
\begin{equation*}
v_{r}^{(1)}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v_{\theta}^{(1)}=-\frac{\partial \psi}{\partial r} ; \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
p^{(1)}=a_{0}+4 \sum_{m=1}^{\infty}(m+1)\left(a_{m} \sin m \theta+b_{m} \cos m \theta\right) r^{m} \tag{22}
\end{equation*}
$$

Here $\psi=\left(1-r^{2}\right) \sum_{m=1}^{\infty}\left(a_{m} \cos m \theta+b_{m} \sin m \theta\right) r^{m}$ and a_{0}, a_{m}, and b_{m} are constants. Using (15) and (21), we obtain

$$
\begin{gather*}
a_{m}=0 \quad(m=1,2, \ldots) \tag{23}\\
b_{2 n-1}=0 \quad(n=1,2, \ldots) \tag{24}\\
b_{2 n}=\frac{2}{\pi} \int_{\theta^{*}}^{\pi / 2} u \sin 2 n \theta d \theta \quad(n=1,2, \ldots) \tag{25}
\end{gather*}
$$

where $u=\left.v_{\theta}^{(1)}\right|_{r=1, \theta^{*} \leqslant \theta \leqslant \pi / 2}$. We assume that $T_{\mathrm{f}} \rightarrow T_{\mathrm{s}}$ as $s \rightarrow \theta^{*}+0$. Accordingly, we have

$$
\begin{equation*}
f=0 \quad \text { for } \theta=\theta^{*}, \theta=\pi-\theta^{*}, \theta=\pi+\theta^{*}, \theta=2 \pi-\theta^{*} \tag{26}
\end{equation*}
$$

From (17), (21), and (23)-(26) it follows that

$$
\begin{equation*}
f=4 \sum_{n=1}^{\infty} b_{2 n}\left(\cos 2 n \theta^{*}-\cos 2 n \theta\right) \tag{27}
\end{equation*}
$$

Equalities (25) and (27) define the relationship between the quantities f and u. According to (17), (21), and (23)-(25), we have

$$
\begin{gathered}
b_{2 k}=\frac{1}{2 k\left(\pi-2 \theta^{*}\right)+\sin 4 k \theta^{*}} \\
\times\left\{\int_{\theta^{*}}^{\pi / 2} \frac{d f}{d \theta} \sin 2 k \theta d \theta+2 \sum_{\substack{n \neq k \\
n=1}}^{\infty} \frac{n}{n^{2}-k^{2}}\left[(n+k) \sin 2(n-k) \theta^{*}-(n-k) \sin 2(n+k) \theta^{*}\right] b_{2 n}\right\} \quad(k=1,2, \ldots)
\end{gathered}
$$

Using (16) and (21)-(25) and taking into account that the lines $L_{\mathrm{fi}}^{(1)}$ and $L_{\mathrm{f} 2}^{(1)}$ border the lines L_{81} and $L_{\mathrm{s} 2}$ at the points O_{1}, O_{2}, O_{4}, and O_{3}, we obtain

$$
\begin{equation*}
\xi_{1}^{(1)}=\mu\left(1-\frac{\sin \theta}{\sin \theta^{*}}\right), \quad \xi_{2}^{(1)}=\mu\left(1+\frac{\sin \theta}{\sin \theta^{*}}\right) \tag{28}
\end{equation*}
$$

where

$$
\mu=\frac{1}{\lambda}\left(-a_{0}+4 \sum_{n=1}^{\infty} b_{2 n} \cos 2 n \theta^{*}\right)
$$

Let, in the first approximation, $\pi A^{2} l q^{(1)}$ be the liquid volume of the bounded by two flow planes separated by distance l. Ignoring the liquid-density variations due to the difference of T from T_{s}, we have

$$
\begin{equation*}
q^{(1)}=1 \tag{29}
\end{equation*}
$$

From (10), (11), (28), and (29) it follows that

$$
\begin{equation*}
a_{0}=4 \sum_{n=1}^{\infty} b_{2 n} \cos 2 n \theta^{*} \tag{30}
\end{equation*}
$$

According to (28) and (30), we have

$$
\begin{equation*}
\xi_{1}^{(1)}=0, \quad \xi_{2}^{(1)}=0 \tag{31}
\end{equation*}
$$

Relations (21)-(25) and (31) define a solution of problem (10)-(16) that satisfies equality (29).

We note that for a rather smooth dependence of $\left.v_{\theta}^{(1)}\right|_{r=1}$ on θ, the operations performed on the series are easily substantiated (see [5]).

Using (18)-(20), we obtain

$$
\begin{equation*}
\tau^{(1)}=c_{0}+\sum_{n=1}^{\infty} c_{n} \cos 2 n \theta r^{2 n} \tag{32}
\end{equation*}
$$

where

$$
c_{0}=\int_{\theta^{*}}^{\pi / 2} \varphi d \theta ; \quad c_{n}=\frac{4}{\pi} \int_{\theta^{*}}^{\pi / 2} \varphi \cos 2 n \theta d \theta \quad(n=1,2, \ldots)
$$

The relations $\xi_{1}=1+\mathrm{Ma} \xi_{1}^{(1)}, \xi_{2}=1+\mathrm{Ma} \xi_{2}^{(1)}, \mathbf{v}=\mathrm{Mav}{ }^{(1)}, p=\mathrm{Ma} p^{(1)}$, and $\tau=\mathrm{Ma} \tau^{(1)}$ and (21)(25), (27), (31), and (32) define the approximate solution of the examined problem of the thermocapillary convection of a liquid in a floating zone.

The results obtained demonstrate the basic laws and provide answers to particular questions pertaining to the problem considered.

Other problems of plane or spatial convection of a liquid in a floating zone can be studied in the same manner as was done above. The approach proposed in the present paper can be used to study both steady and unsteady liquid flows in the absence or presence of mass forces.

REFERENCES

1. B. Feuerbacher, G. Hamacher, and R.J. Naumann (eds.), Materials Sciences in Space. A Contribution to the Scientific Basis of Space Processing, Berlin-New York, Springer-Verlag (1986). (1989).
2. A. D. Myshkis, Methods of Solving Problems of Hydromechanics for Conditions of Weightlessness [in Russian], Naukova Dumka, Kiev (1992).
3. L. L. Regel', "Space materials science," Itogi Nauki Tekh., Issled. Kosm. Prostranst., 29 (1987).
4. L. D. Landau and E. M. Lifshits, Hydrodynamics [in.Russian], Nauka, Moscow (1986).
5. G. M. Fikhtengol'ts, A Course of Differential and Integral Calculation [in Russian], Vols. 2 and 3, Nauka, Moscow (1970).

[^0]: Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 69-73, May-June, 1998. Original article submitted August 30, 1996.

